Search results

Search for "protecting group" in Full Text gives 406 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis and characterization of water-soluble C60–peptide conjugates

  • Yue Ma,
  • Lorenzo Persi and
  • Yoko Yamakoshi

Beilstein J. Org. Chem. 2024, 20, 777–786, doi:10.3762/bjoc.20.71

Graphical Abstract
  • , ii) HBTU, DIPEA, in DMF, rt, overnight, and iii) trifluoroacetic acid (TFA)/triisopropylsilane (TIPS)/H2O, rt, 1.5–2 h. AA and PG stand for amino acid and protecting group, respectively. All AAs in 1a–c, 2a–c, and 4a–c were protected. Structure of C60–oligo-Lys (5a), C60–oligo-Glu (5b), and C60–oligo
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2024

Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization

  • Senze Qiao,
  • Zhongyu Cheng and
  • Fuzhuo Li

Beilstein J. Org. Chem. 2024, 20, 721–733, doi:10.3762/bjoc.20.66

Graphical Abstract
  • then transformed into aldehyde 31 through several protecting group adjustments and the corresponding alcohol and Ley oxidation. After the preparation of 33 using Evans syn-aldol condensation as a critical step, 34 was produced by thioester formation, desilylation, and allylic oxidation. Incubating 34
PDF
Album
Review
Published 04 Apr 2024

SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

  • Julien Borrel and
  • Jerome Waser

Beilstein J. Org. Chem. 2024, 20, 701–713, doi:10.3762/bjoc.20.64

Graphical Abstract
  • partial conversion of the starting material was observed. We postulated that the presence of two Boc protecting groups on the nitrogen makes the oxidation of the C-centered radical challenging. By using 1o only bearing one protecting group the desired product could be obtained, albeit in only 17% yield
PDF
Album
Supp Info
Commentary
Published 03 Apr 2024

Ligand effects, solvent cooperation, and large kinetic solvent deuterium isotope effects in gold(I)-catalyzed intramolecular alkene hydroamination

  • Ruichen Lan,
  • Brock Yager,
  • Yoonsun Jee,
  • Cynthia S. Day and
  • Amanda C. Jones

Beilstein J. Org. Chem. 2024, 20, 479–496, doi:10.3762/bjoc.20.43

Graphical Abstract
  • out under a variety of conditions with cationic gold catalysts supported by phosphine ligands. The impact of ligand on gold, protecting group on nitrogen, and solvent and additive on reaction rates was determined. The most effective reactions utilized more Lewis basic ureas, and more electron
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2024

Catalytic multi-step domino and one-pot reactions

  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2024, 20, 254–256, doi:10.3762/bjoc.20.25

Graphical Abstract
  • sophistication over the past decades. Most known processes, however, are still frequently hampered by lengthy protecting-group strategies and very costly purification procedures derived from the "stop-and-go" synthetic methods (Figure 1a). Those protocols are still far from the ideal synthesis, implying high
  • atom efficiency, step and pot economies, decreased number of purification steps, or protecting-group-free synthesis. Multi-step domino [1][2] and one-pot [3] reactions represent a new powerful toolbox in organic synthesis to install molecular complexity economically and sustainably, starting from
PDF
Album
Editorial
Published 08 Feb 2024

Optimizations of lipid II synthesis: an essential glycolipid precursor in bacterial cell wall synthesis and a validated antibiotic target

  • Milandip Karak,
  • Cian R. Cloonan,
  • Brad R. Baker,
  • Rachel V. K. Cochrane and
  • Stephen A. Cochrane

Beilstein J. Org. Chem. 2024, 20, 220–227, doi:10.3762/bjoc.20.22

Graphical Abstract
  • , followed by in situ re-acetylation of the C2-amino group and C6-alcohol with acetic anhydride, resulting in the formation of disaccharide 4 in a one-pot fashion. The anomeric benzyl protecting group in disaccharide 4 was then removed via a Pd/C-catalyzed hydrogenation reaction, producing a mixture of α/β
  • -phosphite intermediate was then oxidized with hydrogen peroxide to yield dibenzyl α-phosphate 6, achieving an overall yield of 89% for these two steps. Removal of the 2-(phenylsulfonyl)ethanol protecting group in compound 6 was successfully achieved through treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

A novel recyclable organocatalyst for the gram-scale enantioselective synthesis of (S)-baclofen

  • Gyula Dargó,
  • Dóra Erdélyi,
  • Balázs Molnár,
  • Péter Kisszékelyi,
  • Zsófia Garádi and
  • József Kupai

Beilstein J. Org. Chem. 2023, 19, 1811–1824, doi:10.3762/bjoc.19.133

Graphical Abstract
  • applied between the catalytic and lipophilic units to avoid a decrease in the catalytic activity. The demethylated cinchona squaramide 6 was reacted with O-p-toluenesulfonyl-N-Boc-ethanolamine. The protecting group was removed using trifluoroacetic acid, followed by a neutralization step, gaining the
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2023

α-(Aminomethyl)acrylates as acceptors in radical–polar crossover 1,4-additions of dialkylzincs: insights into enolate formation and trapping

  • Angel Palillero-Cisneros,
  • Paola G. Gordillo-Guerra,
  • Fernando García-Alvarez,
  • Olivier Jackowski,
  • Franck Ferreira,
  • Fabrice Chemla,
  • Joel L. Terán and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2023, 19, 1443–1451, doi:10.3762/bjoc.19.103

Graphical Abstract
  • , thereby precluding its synthetic exploitation. Results and Discussion Preparation of α-(aminomethyl)acrylates We commenced our study by preparing a selection of α-(aminomethyl)acrylates with variations of the nitrogen protecting group and the ester substituent. Towards this end, the direct allylation of
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
  • intermediate 6.3 (ᴅ- or ʟ-threitol) that was then alkylated with mesityl lipid alcohol to produce 6.4 [80][81]. The acetal protecting group was removed in acidic conditions and then the intermediate 6.5 was subjected to oxidative cleavage to yield an aldehyde that was reduced with NaBH4 to produce 6.6a,b
  • 1H-tetrazole to produce the trialkyl phosphite 8.3 that was oxidized with tert-butyl hydroperoxide to produce phosphate 8.4. Then, β-elimination of the cyanoethyl protecting group produced PAF with a global yield of 70%. The limit of this method arises from the instability of the precursor 8.1 for
  • deprotonation of solketal in DMF followed by the addition of oleyl alcohol tosylate. 9.3 was isolated after the hydrolysis in acidic conditions of the acetal protecting group. The protection of the primary alcohol required a protecting group that can be deprotected without affecting the C=C double bond of the
PDF
Album
Review
Published 08 Sep 2023
Graphical Abstract
  • of the Boc-protecting group with the Teoc group then gave phenol 136. Compound 136 was then subjected to a highly diastereoselective oxidative phenolic coupling giving fused tetracyclic architecture 137. Follow-up acid-mediated intramolecular aza-Michael addition and subsequent alkene reduction
PDF
Album
Review
Published 28 Jun 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • been shown to impart high levels of enantioselectivity for these ketones [46]. We performed the conjugate addition for 2 h and then added imine 58 having a tosyl protecting group. The workup allowed the isolation of domino products 59 as a mixture of diastereomers with dr 3:2 and enantiomeric purities
  • several imines bearing various N-protecting groups [48]. We have argued that this protecting group could influence the enolate addition. Indeed, an effect of the nitrogen protecting group was observed. Interestingly, small sulfonyl-based protecting groups led to the (R,R,S)-diastereoisomer of the product
  • 61. On the other hand, the sterically bulky diphenylphosphorane group afforded the (R,R,R)-diastereoisomer 63 as the main product. The large protecting group likely overrides the repulsive interaction between the enolate and a phenyl group in a preferred synclinal Mg-bound arrangement of the reagents
PDF
Album
Review
Published 04 May 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • -butyldimethylsilyl-protecting group resulted in the corresponding 1,5-enyne only being produced in a 33% yield. Several different norbornene derivatives were explored and gave the anticipated exo,exo-difunctionalized product in good yield. In contrast, when using an ethylene-bridged bicycloalkene to generate the
  • ]-sigmatropic rearrangement of the diazabicycle 47 to form the allylic carbazate intermediate 51. Nucleophilic attack of an organomagnesium, or organocuprate, in an anti SN2’ fashion on 52 furnish the final ring-opened product 49. The authors note the use of a carbamate protecting group was crucial for the
PDF
Album
Review
Published 24 Apr 2023

Synthesis, α-mannosidase inhibition studies and molecular modeling of 1,4-imino-ᴅ-lyxitols and their C-5-altered N-arylalkyl derivatives

  • Martin Kalník,
  • Sergej Šesták,
  • Juraj Kóňa,
  • Maroš Bella and
  • Monika Poláková

Beilstein J. Org. Chem. 2023, 19, 282–293, doi:10.3762/bjoc.19.24

Graphical Abstract
  • -benzyl group with the Cbz group, trityl ether hydrolysis, oxidation of the liberated OH group, and stereoselective addition of MeMgBr to the resulting aldehyde functionality. Hydrogenolysis of the Cbz protecting group in 13 followed by N-alkylation afforded pyrrolidines 14–16 which after acidic
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • reaction has never been used in the synthesis of natural products before this report, and no β-elimination of the silyloxy group was observed, although this often occurs in such systems [26]. The installation of the two alkenes in 37 required 13 additional steps, and further protecting group manipulations
  • were necessary to give compound 38 as a precursor for the late-stage RCM cyclization. This ring formation was very challenging and necessitated extended optimization. Indeed, during the course of the RCM a dramatic effect of the OH-protecting group on the cyclopentane unit was observed. The presence of
  • a TBDPS substituent in compound 40 was assumed unfavorable, since this bulky residue generates a steric hindrance precluding the cyclization (Scheme 6, path A) [27]. Its replacement by a sterically less demanding benzyl protecting group (compound 44) allowed the reaction to occur (Scheme 6, path B
PDF
Album
Review
Published 03 Mar 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • rapid build-up of target molecules (see Scheme 1a) [7]. Once the important skeletal carbon–carbon bonds have been formed around the thioketal carbon, the sulfur-heterocycle can perform its primary function as a temporary protecting group and be chemoselectively hydrolyzed to afford a carbonyl functional
  • , control of the reactivity of Raney nickel (which always has to be employed in excess and in a heterogenous system), can be quite time consuming. Finally, the 1,4-dithiane or -dithiin ring system need not necessarily be considered as a temporary tethering of protecting group, but can also become an
PDF
Album
Review
Published 02 Feb 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • of atom economy and protecting-group-free synthesis dominating the field of total synthesis. In this new era, total synthesis is moving towards natural efficacy by utilizing both the biosynthetic knowledge of divergent synthesis and the latest developments in radical chemistry. This contemporary
  • protecting-group-free synthesis [13], are gradually drawing more and more the interest of organic chemists as a sustainable way to deliver structurally diverse chemical libraries for biological screening. The current review is focusing on selected examples utilizing a radical-based divergent total synthesis
  • products kadsulignan E (235) and heteroclitin J (236) depending on the appropriate substitution of DBCODs. Selection of radical termination at the 3- and 1-positions, respectively, can be engineered by the strategic incorporation of a TES protecting group at the 1-position (see 243) for heteroclitin J (236
PDF
Album
Review
Published 02 Jan 2023

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • had previously reported a similar rearrangement for the synthesis of a grayanane-type skeleton [21]. Further methylation and protecting group interconversions lead to an advanced tricyclic structure 5, which could be further elaborated into relay intermediate 1. Although Matsumoto’s approach does not
  • substituted cyclohexanone 9, corresponding to the future C ring [24]. After deprotonation, the C3 position was stereoselectively alkylated using propargyl bromide, and the benzyl protecting group was cleaved with FeCl3, leading to spontaneous lactone closure. A Luche reduction stereoselectively converted
  • the PMB protecting group, Dess–Martin oxidation, and SmI2-induced cyclization. This last step was highly selective, giving solely the intermediate 17. The synthesis was then pursued by the hydroboration–oxidation of the monosubstituted alkene, followed by stereoselective epoxidation of the 1,1
PDF
Album
Review
Published 12 Dec 2022

A new route for the synthesis of 1-deazaguanine and 1-deazahypoxanthine

  • Raphael Bereiter,
  • Marco Oberlechner and
  • Ronald Micura

Beilstein J. Org. Chem. 2022, 18, 1617–1624, doi:10.3762/bjoc.18.172

Graphical Abstract
  • alcohol. We build on a commercially available imidazopyridine derivative and conceived a protecting group strategy to enhance solubility and selectivity to orchestrate the installation of the exocyclic amino and hydroxy groups. Results and Discussion 1-Deazaguanine Previously described syntheses for 1
  • tetrahydropyranyl protecting group. The final step was then accomplished by hydrogenation of benzyl ether 31 to obtain 1-deazahypoxanthine (30) in 44% overall yield. Conclusion We have developed convenient synthetic routes for 1-deazaguanine (11) and 1-deazahypoxanthine (30). Starting from readily accessible 6-iodo
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2022

Solid-phase total synthesis and structural confirmation of antimicrobial longicatenamide A

  • Takumi Matsumoto,
  • Takefumi Kuranaga,
  • Yuto Taniguchi,
  • Weicheng Wang and
  • Hideaki Kakeya

Beilstein J. Org. Chem. 2022, 18, 1560–1566, doi:10.3762/bjoc.18.166

Graphical Abstract
  • )-protected ᴅ-serine 12 (Scheme 2). Treatment of the olefin 15 with trifluoroacetic acid (TFA) cleaved the Boc protecting group and the acetonide to deliver unsaturated amino alcohol 16. The amino group in 16 was protected by the fluorenylmethyloxycarbonyl (Fmoc) protecting group for solid-phase peptide
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Preparation of an advanced intermediate for the synthesis of leustroducsins and phoslactomycins by heterocycloaddition

  • Anaïs Rousseau,
  • Guillaume Vincent and
  • Cyrille Kouklovsky

Beilstein J. Org. Chem. 2022, 18, 1385–1395, doi:10.3762/bjoc.18.143

Graphical Abstract
  • phosphates can be hydrolysed under basic, acidic or reductive conditions [26]. Although acidic conditions could not be used due to the lability of the nitrogen Boc-protecting group, we found that the TIPS-protected cycloadduct 10b could be cleanly transformed into the ketone 11b with excess Red-Al [28
  • ], together with a small amount of the over reduced alcohol 12b, which could be reoxidized to 11b (Scheme 4). Other substrates failed to deliver appreciable yields of the ketone under the same conditions. These studies validate the role of TIPS ether as protecting group for the primary alcohol. At this stage
  • we wondered whether it was possible to perform the whole synthetic sequence with this protecting group. Accordingly, the enol phosphate 13 was synthesized in five steps (26% overall yield) from 1,4-butanediol (Scheme 5). Since cycloaddition with the Wightman reagent 6 releases hydrogen chloride in
PDF
Album
Full Research Paper
Published 04 Oct 2022

First series of N-alkylamino peptoid homooligomers: solution phase synthesis and conformational investigation

  • Maxime Pypec,
  • Laurent Jouffret,
  • Claude Taillefumier and
  • Olivier Roy

Beilstein J. Org. Chem. 2022, 18, 845–854, doi:10.3762/bjoc.18.85

Graphical Abstract
  • -methylhydrazine as a submonomer was adopted in this work (Figure 2). Benzyl bromoacetate, rather than tert-butyl bromoacetate, successfully used in the past for the synthesis of peptoids in solution [22], was chosen as the starting substrate to ensure orthogonality of the C-terminal protecting group with respect
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2022

New synthesis of a late-stage tetracyclic key intermediate of lumateperone

  • Mátyás Milen,
  • Bálint Nyulasi,
  • Tamás Nagy,
  • Gyula Simig and
  • Balázs Volk

Beilstein J. Org. Chem. 2022, 18, 653–659, doi:10.3762/bjoc.18.66

Graphical Abstract
  • a Fischer indole synthesis. The inexpensive starting material, the efficient synthetic steps, and the avoidance of the borane-based reduction step provide a reasonable potential for scalability. Keywords: drug substance; indole synthesis; key intermediate; protecting group; telescoping
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2022

Bioinspired tetraamino-bisthiourea chiral macrocycles in catalyzing decarboxylative Mannich reactions

  • Hao Guo,
  • Yu-Fei Ao,
  • De-Xian Wang and
  • Qi-Qiang Wang

Beilstein J. Org. Chem. 2022, 18, 486–496, doi:10.3762/bjoc.18.51

Graphical Abstract
  • ), the corresponding products 8b–g were obtained in only moderate yields with decreased selectivity. Replacing the Boc-protecting group on the imine site by a Cbz group led to a largely decreased selectivity (8h). For a series of substrates with various substituents on the 5, 6, or 7-position, including
PDF
Album
Supp Info
Full Research Paper
Published 02 May 2022

Menadione: a platform and a target to valuable compounds synthesis

  • Acácio S. de Souza,
  • Ruan Carlos B. Ribeiro,
  • Dora C. S. Costa,
  • Fernanda P. Pauli,
  • David R. Pinho,
  • Matheus G. de Moraes,
  • Fernando de C. da Silva,
  • Luana da S. M. Forezi and
  • Vitor F. Ferreira

Beilstein J. Org. Chem. 2022, 18, 381–419, doi:10.3762/bjoc.18.43

Graphical Abstract
  • was possible. However, the high conversion rates of the reagents to the desired products were not reflected in the isolated product yields, which was attributed to the workup and purification processes. It was also possible to demonstrate a moderate influence of the N-protecting group on the reaction
PDF
Album
Review
Published 11 Apr 2022

Site-selective reactions mediated by molecular containers

  • Rui Wang and
  • Yang Yu

Beilstein J. Org. Chem. 2022, 18, 309–324, doi:10.3762/bjoc.18.35

Graphical Abstract
  • could be regarded as a protective group by shielding the internal alkenyl site. In 2016, the Rebek group achieved the site-selective reduction of an α,ω-diazide compound by trimethylphosphine (PMe3) in aqueous solution with a cavitand host as the protecting group for one of the azide sites (Figure 5
  • , and factors like steric and electronic effects of the nucleophile and substrate and the polarity of the solvent would influence the product ratio [75]. Here, as illustrated above, the authors introduced the cage host J as the noncovalent protecting group of the internal reactive sites, which directed
PDF
Album
Review
Published 14 Mar 2022
Other Beilstein-Institut Open Science Activities